
WAK14 4Distribution~ UnlbLited

A D-A205 784 Cb - Office of Naval Research

6o. OFFICE SFlViOL' /a. NAME OF MON~ITORING ORGANIZATION

Laboratory for Information ~ a~ial) 80N unySre
and Decision Systems ________ Arlington, VA 22217-5000

6r-. ADDRESS (City, State, and ZIP Cooe)7bADRS(Ct.taeanZI 0eMass. Institute of Technology 7.ADES(iy tradZPC~e
Room 35-214
Cambridge, MA 02139

Ba.NAM OFFUDIN/SPNSRIN 1 b.OFFICE SYMBOL [9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORFGANIZATION I(if applicable) N01-5K01

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT . ~
ELEMENT NO. NO. NO. ACCESSION NO.

11. TITLE (Incluce Security 0asawlica lion)--

ON TE COMMUNICATION COMPLEXITY OF DISTRIBUTED ALGEBRAIC COMPUTATION

Zhi-Quan Luo and John N. TSitsiklis
13a. TYPE OF REPORT 13b, TIME COVERED 14 DATE OF REPORT (Year month. Day) IS5. PAGE COUNT

17. COfATI CODES 1B. SUBJECT TERMS (Continue on reverse if necessary and soentuly oy boocK number)
FIELD GROUP SUB-GROUP

19. ABSTRACT (Continue on reverse if necp- -'' ' --

We consider a situation where two processors P, and P2 are to evaluate a collection of
functions fl,..., , of two vector variables z, y, under the assumption that processor P,

(respectively, P2) has access Only to the value II the variable z (respectively, Y') and the
functional form of f1,.. . ,,. We provide some new bounds on the communication com-
plexity (the amount of information that has to be exchanged between the processors) for
this problem. An almost optimal bound is derived for the case of one-way communication
when the functions fl,. .. , f# are polynomials. We also derive some new lower bounds for
the case of two-way communication which improve on earlier bounds by Abelson [A 801.
As an application, we consider the case where z and y ar e n x n matrices and f (z, yi) is a
particular entry of the inverse of z + y,. 'Under a certairn restriction on the class of allowed
communication protocols, we obtain an rl(n') lower bound, in contrast to the 11(n) lower

20 Ibound obtained by applying Abelson's results. Our results arebaeoncrintlsfm

lJ U classical algebraic geometry and field extension theory.
22a. NA . . .- - - SMO

OD FORM 1473. 84 MAR 83 APR ecitnon may oe usea uni onausvc. S~UIYCASFCTO FTISAG
Ai; tmer eomoinS are ooso'ete SCRT LASFCO OF 1-1 DAG

r- 3 01 13G-41"



LIDS-P-1851

On the Communication Complexity of Distributed

Algebraic Computation1

Zhi-Quan Luo2

John N. Tsitsiklis
2

February, 1989

ACCtsIU;: iO"

NTIS CRA&!
DrIC TAB

8 .. _... ...... ........

Avl .i ilior
Dist

'Research supported by the ONR under contract N00014-84-K-0519 (NR 649-003) and the ARO under

contract DAAL03-86-K-0171.
2 Operations Research Center and Laboratory for Information and Decision Systems, MIT, Cambridge,

Mass. 0213c.



ABSTRACT

We conside44 situati6n where two processors PI and P2 are to evaluate a collection of
functions t,.... ,~of two vector variables z, y, under the assumption that processor Pb

(respectively, P) has access,'only to the value of the variable z (respectively, y) and the

functional form of A..., A. We provide some new bounds on the communication com-
plexity (the amount of information that has to be exchanged between the processors) for
this problem. An almost optimal bound is derived for the case of one-way communicatiou
when the functions f, ..... 6 are polynomials. We also derive scme new lower bounds for
the case of two-way communication which improve on earlier bcunds by Abelson [A 80.
As an application, we consider the case where z and y are n x n matrices and f(z, y) is a
particular entry of the inverse of x + y. Under a certain restriction on the class of allowed
communicz.tion protocols, we obtain an 0(n) lower bound, in contrast to the 6'(n) lower
bound obtained by applying Abelson's results. Our results are based on certaiti tools from
classical algebraic geometry and field extension thecry. 4 . .
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1 Introduction.

In several situations of practical interest there is a set of processors who wish to perform

some computational task and who must communicate because none of them possesses all
of the problem data. Communication resources are often limited and w are led tn thp
study of the minimal amount of required information transfer, that is, the "communica-

tion complexity" of the problem under consideration. For example, in parallel computation

[BT 89], communication is often much slower than computation and excessive communica-
tion may create bottlenecks to the speed of an algorithm. A similar argument applies to
computations using special purpose VLSI chips LU 84) in which communications capabili-
ties are constrained by physical and topological considerations. Finally, there are several

applications in signal processing: for example, in decentralized estimation and detection,
or in distributed sensor networks ITS 811, data are collected at geographically distant sites.

Then, summaries of the data are communicated so as to enable a particular processor or sen-
sor to make certain statistical inferences (see e.g. [WB 82]). Communication resources are

often costly in such contexts, and it is again natural to minimize the amount of information

exchange.

1.1 Communication Protocols.

In this subsection, we introduce the class of protocols that will be considered and we for-

mulate the general problem to be studied.

Let there be two processors P and P2 . Processor P, (respectively, P2 ) has access to
the value of a vector x E R' (respectively y E R'). Let there be given a finite collection f
of functions f1,f2,... ,f, : D1- R, where D7 is some subset of R' x !R on which these

functions are defined. (For example, if each fi is a rational function expressed as a ratio of

two relatively prime polynomials, it is natural to let D1 be the set of all vectors at which

none of the denominators of these functions vanishes.)

The objective of the processors is to exchange messages and compute the values fI (x, y),
, f, (x, y). It is assumed that both processors know the formulas defining these functions.

(For instance, if each fi is a polynomial, then each processor knows the coefficients of these

polynomials.) Ideally, a protocol should work for all possible values (x, y) E Df of the
"inputs". We will occasionally consider, however, protocols which are defined only when
(Z, y) belongs to some possibly smaller set D C D1 .

In a two-way communication protocol ir, messages can be exchanged in both directions.
We use r(ir) to denote the number of exchanged messages and we let TI-. 2 (respectively,
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T2 . 1 ) denote the set of i's for which the ith message is transmitted from PI to P2 (re-
spectively, from P2 to PI). The protocol is defined in terms of a collection of functions
m 1 ,.. .,m,() mapping a set D C D- into R. (In particular, m,(x,y) is the value of the
ith message and the set D is called the domain of the protocol.) Since a message by a
processor can only be a function of the information available to that processor, we impose
the requirement that for each i, there exists some real-valued function rhi such that

mi(z,y)= r(x, ml(x,y),...,nl .(x,y)), V(x, y) E D, if i E T1 - 2 , (1.1)

and

Mi (Z, Y)= i (Y, M I X, Y), ... ,iMk- 1(2) Y)), V~x, y) E D if iE T2-_1. (1.2)

We say that the protocol is legitimate if either of the following conditions is true:

a) There exist functions hi,... ,h, such that

f(X, I y) = hi (x, mIzx, y),...,mr()C(x,y)), V(x, y) E D, i= 1,...,s. (1.3)

(This corresponds to the case where processor P evaluates the final result.)

b) There exist functions hi,... , h, such that

f,( x, y) = hi (y,mI(z, y),... ,m()(X, y)) , V(x, y) E D, i = 1,... ,s. (1.4)

Let rl(7; D, -) denote the class of all legitimate two-way protocols, with domain D, for
computing the functions fl,... , fJ, subject to some additional restrictions to be introduced
later. We define the two-way communication complexity C(7; D, *-.) for computing f on
the domain D to be

C(7;D, -)= inf r(Kr).
rEfl(f;D,"-)

The definition of an one-way communication protocol x is identical, except that messages
can only be transmitted by processor P1 . That is, the set T2 -.1 is assumed empty. Let
nl(!; D, --') denote the set of all legitimate one-way communication protocols with domain
D. We define the one-way (from P to P2) communication complexity C(f; D, --4) on the
domain D to be

C(7; D,-) = inf r(?r).
wefl(f;D,-.)

Notice that in the above models the protocols are "continuous" in the sense that the
messages to be sent are real numbers. Given that real numbers can only be encoded with
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an infinite number of bits, such protocols might seem impossible to implement in practice.

However, parallel and distributed numerical algorithms are almost always described and
analyzed as if real numbers can be cormnunicated, with the understanding that in practice

these numbers i'.'ill be encoded with a finite number of bits which is sufficient to obtain a
desired accuracy. Furthermore, if the messages being transmitted are rational functions of

the data and if the data consist of rational numbers, then an implementation using a finite

number of bits is clearly possible. Finally, in practice, it is usually the case that a field -V a
fixed length is used for transmitting an encoded version of a real number. For this reason,

it is reasonable to count the number of real-valued messages being transmitted, as opposed
to counting individual bits. Our model is therefore a fairly realistic way of capturing the

communication resources needed in a number of practical applications.

Typically, some smoothness constraints have to be imposed on the message functions

mI,... , Mr(). This is because there exist one-to- one functions from !R' into R, and pro-

cessor P could transmit the value of its vector x by using a single message. In particular,
P can simply interleave the binary expansions of the components of z and use the re-

sulting number as a message. This is not a useful protocol, for the purposes of numerical
computation, and is unlike any protocol that is used in practice. In contrast to the above

described interleaving, a good protocol should compress the information in x or y intelli-

gently, and then transmit only the compressed information. For this reason, we shall impose
some smoothness requirements on the message functions mi. From a technical point of view,

smoothness assumptions prohibit the use of one-to-one functions from R' into R, if m > 1.

From a practical point of view, such smoothness is present in the vast majority of practical

numerical methods for algebraic problems. Furthermore, in this paper, we concentrate on

the case where each one of the functions in fl,..., f is rational. It is then natural to

restrict attention even further to protocols involving only rational functions of the data.

This is equivalent to an assumption that each processor can only perform the elementary
arithmetic operations. Such an assumption is common in complexity studies for algebraic

problems.

In the sequel we use the shorter notations If(7; D) and C(7; D) whenever it is clear

from the context whether we are dealing with one-way or two-way protocols. Furthermore,
we use the notation lI(f; D) and C(f; D) whenever s = I and the collection f of functions

consists of the single function f.

In this paper, we will consider various restrictions on the set of allowed protocols. We

indicate these restrictions in our notation as shown in Table 1:
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Notations Restrictions on the message Restrictions on the final
functions rhl, ... ,hM evaluation functions
(cf. Eqs. (1.1)-(1.2)). hi,...,h,(cf. Eqs. (1.3)-(1.4)).

I1(f, D) continuously differentiable continuously differentiable
n12(J, D) twice continuously differentiable twice continuously differentiable
folo(7, D) infinitely differentiable infinitely differentiable
Ilrat(f, D) rational rational
flpoI, (7, D) polynomial rational
nii.,.,(7, D) linear polynomial

Table 1

We use notation like C1 (7; D), C2(7; D), etc., to denote the communication complexity
under the restrictions on the protocols introduced in Table 1. Notice that as we go down
the table additional restrictions are introduced and, therefore, the corresponding commu-
nication complexity can only increase. Finally, assuming that D is a nonempty open set,
we see that the set lnt(f; D) (respectively, flinear(f; D)) is empty unless f is a rational
(respectively, polynomial) function.

All of our definitions can be extended, in the obvious way, to the case where the real
number field R is replaced by the complex field C. Here, all the functions fi are defined
on a subset D7 of Cm X Cn and take values in C. Furthermore, a protocol has a domain
D C C' x Cn and the message functions mi and t [cf. Eqs. (1.1)-(1.2)] are defined on D.

1.2 Related Research.

The problem formulation we are using is due to Abelson ([A 78], [A 80]) who established
lower bounds on one-way and two-way communication complexity, assuming that the mes-
sage functions are once (respectively, twice) continuously differentiable. (These results are
stated and discussed in Sections 3 and 5, respectively.)

Communication complexity has also been studied under discrete models of communica-
tion. In these models, the messages exchanged are binary and the functions evaluated are
such that a finite number of binary messages are actually sufficient. For example, [Y 79]
and [PS 82] consider the computation of Boolean functions using binary messages. The
approach in these references is combinatorial in nature and very different from ours. A
fair amount of research has dealt with extensions of the results of [Y 79] and with the
evaluation of the communication complexity of selected combinatorial problems ([AU 83i,
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[MS 82], [PE 861, [PS 82], [PT 821, [U 84]). A different framework is considered in [TL 87i

for the problem of approximately minimizing (within a desired accuracy) the sum of two

convex functions, with each function known by a different processor. Here, the objective is

to minimize the number of binary messages, as a function of the desired accuracy of the

solution.

1.3 Outline of the Paper.

The rest of this paper is organized as follows. In Section 2, we present some background

results from field extension theory that will be used in our study of one-way communication

complexity.

In Section 3, we study the one-way communication complexity of computing a set

fi,... , f, of polynomials. The results of [A 78] (stated in Subsection 3.1) provide a complete
solution for the case of a single function f, smooth message functions, and protocols whose

domain is a (possibly very small) open set. We extend these results to the case of s > 1.

We also show that we can restrict to the class of polynomial protocols while increasing

the communication complexity by at most one. Furthermore, the polynomial protocols we

construct have a domain which is almost all of Rm x Rn (except for a set of measure 7ero).

We also consider the special case where m = n and each one of the polynomials f : R' x !R'
is of the form fi(x,y) = hi(x + y), where each 7 i is a polynomial in n variables. For this

case, we obtain a complete characterization of the communication complexity, a proof that

linear protocols are optimal, and a constructive procedure for designing such protocols.

In Section 4, we present some background from algebraic geometry (e.g. Hilbert's Null-

stellensatz) that will be needed later.

In Section 5, we derive several general lower bounds on two-way communication com-

plexity of computing a rational function f when the messages are constrained to be rational

functions of the data. Our results are obtained by combining an earlier result of Abelson

[A 80] with the tools of Section 4. We also identify certain instances where the lower bounds

of [A 801 are tight.

In Section 6, we apply the results of Section 5 to the problem of computing a particular

entry of the inverse of z + y, where z and y are n x n complex matrices. We derive an n2 
- 1

lower bound (which agrees with the obvious upper bound, within one message), while the
results of [A80] could only provide an fl(n) lower bound.
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2 Preliminaries.

In this section, we introduce some algebraic results (see e.g. [ZS 65, pages 95-125] or
[VW 53]) that will be needed in Section 3.

Notation: Let {ai : i E I) be a collection of vectors in R', where I is a finite index set.
We use [a, : i E I] to denote the matrix with columns ai, i E I. Whenever the range of the
index variable i (that is, the index set I) is evident from the context, we use the simpler
notation [a, : i]. For any function f : R' " R, we use Vf to denote the vector-valued
function whose components are the partial derivatives of f. We also use Vf(p) to denote
the value of Vf evaluated at some p E R'.

Definition 2.1 Let F1 and F2 be two fields. We say that F2 is an extension of F1 , denoted
by F2/FI, if F1 is a subfield of F2 . An element A E F2 is said to be algebraic over F, if A
satisfies a relation f(A) = 0, where f is a polynomial with coefficients taken from Fl. We
say that F2 is an algebraic extension field of F, if all the elements of F2 are algebraic over
Fl. Otherwise, we say that F2 is a transcendental extension field of F1 .

Let F, be a subfield of some field F. A typical way of constructing an extension field of
F1 is by adjoining to F1 some elements Ai E F that do not belong to F1 (i in some index set
A). Consider the set of all subfields of F that contain F1 and Ai (i E 4). The intersection
of all of these fields is still a field and is the smallest field containing F, and the Ai's. This
field is called the field generated by the Ai's and will be denoted by F2 = F1({Ai, i E .4}).
When the cardiuality of A is finite, we say that F2 is a finitely generated extension field of
F1 .

Definition 2.2 We say that F2 is a finite algebraic extension of the field F1, if the extension
F2/F is algebraic and the dimension of F2 , when regarded as a vector space over F1, is finite.

Definition 2.3 Let F2/F1 be a finite algebraic extension and let A be an element of F2.
We say that A is a primitive element of the extension F2/F if F2 = Fi(A), i.e., if F2 is
generated by A over the field Fl. In this case, we say that F2 is a simple extension of F1 .

The notion of a finite algebraic extension is different from the notion of a finitely generated
extension. For example, !(x) is a finitely generated field over 8 but not a finite algebraic
extension since !R(z)/!R is a transcendental extension. However, the following theorem states
that this is the only type of counterexample (see [ZS 65, pages 60-61]).

Theorem 2.1 Every finitely generated algebraic extension is finite.
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Definition 2.4 Let F be a field and let F[x] be the ring of polynomials with coefficients in

F. The differentiation operator T is the mapping of F[xI into itself defined in terms of the
following properties:

- E aixi- iaix'-l',

where n > O and a, E F, i=0,...,n.

We note that when F is equal to R, the above definition coiikcides with the usual notion of

differentiation.

Definition 2.5 Let F2 /FI be an algebraic extension and let A be an element in F2 . The
minimal polynomial of A is a polynomial f E F 1x] of the smallest degree such that f(A) = 0.

The element A is called separable over F1 if there holds (-(f)) (A) # 0, where f is the

minimal polynomial of A. F2 is called a separable algebraic extension if all the elements of

F2 are separable over Fl.

The following result (see e.g.[ZS 65, page 84]) is called the theorem of primitive element

and will be used in Section 3.

Theorem 2.2 Every finite separable algebraic extension F2 /F has a primitive element.

Hence, every such extension is a simple extension. Furthermore, if F 2 = F,(A1,.. .,Ak),

then there exists a primitive element of the form A _ w

Remark: In fact, the proof of Theorem 2.2 given in [ZS 65, page 84] shows that a primitive
element A is obtained for any arbitrvry choice of the coefficients yr,.-. ,yk as long as they do

not lie in the zero set of a certain polynomial. As an illustration, notice that (1+i, 1-i) = C

is a finite separable algebraic extension over R. By Theorem 2.2, there exists a primitive
element which can be taken as a linear combination of 1 + i, 1 - i. In particular, one has

R(1 + i, 1 - i) = R(11(1 + i) + -12(1 - i)) for some suitable choices of real numbers '1, ^12.
It is not hard to see that all of the fields R(-Yl(1 + i) + 72(1 - i)) are equal to C, as long as

71 # "t2.

We now turn our attention to the case of transcendental extensions.

Definition 2.6 Let F2/FI be a field extension. The transcendental degree of F2/F, is

defined as the smallest number t such that there exist elements A,, A2 ,... , At in F2 with the
property that F2 is an algebraic extension of Fi(Ai,A 2 ,...,At). In particular, if F2/F1 is

an algebraic extension to start with, then its transcendental extension degree is zero. The

transcendental degree will be denoted by tr.d.F2 /Fl and the elements A,, A2,... ,At will be

called a transcendental basis of F2 /F.
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In light of the above definition, R(X1, Z2,. ,zm) (the field of rational functions over
with indeterminates X1 ,X2,.. ,Xm) is a transcendental extension of R with degree rn and

Z1, X2,. .. ,z can be taken as a transcendental basis. The following theorem summarizes
some important properties of the transcendental degree of a field extension.

Theorem 2.3 Let F2 be a finitely generated extension field of F and let F3 be a finitely
generated extension field of F2 . (In particular, F3 is also a finitely generated extension field
of F1.) Suppose that F3 = F,(A,,A 2,..., A.) and that tr.d.F3 /Fl = t. Then,

t = tr.d.F3/F = tr.d.F3 /F 2 + tr.d.F2/F,.

The following is the definition of a derivation over a field, which is a generalized notion

of differentiation.

Definition 2.7 Let F2 be a finitely generated extension field of F1 and let F3 be an extension
field of F2 . A mapping D of F2 into F3 is said to be an F,-derivation of F2 (with values in

F3) if, for every A in F, and every z, y in F2 , the mapping D has the following properties:

I. D(A) = O;

2. D(x + y) = D(z) -r D(y);

S. D(xy) = xD(y) + yD(x).

Notice that the derivations are defined in a way that is very similar to differentiations.

As a result, one can show that the well known chain rules remain true for derivations. We
now let DF2 /F,(F3) stand for the space of all Fl-derivations of F2 with values in F3 . Then

DF2 /F1 (F3) can be viewed as a vector space over F3 in a natural way since one can easily
verify that DF/F, (F3) is closed under linear combinations over F3. It can be shown (see
[ZS 65, pagesl20-127]) that the dimension of the vector space DF2/F, (F3 ) does not depend
on the particular choice of F3 . It is for this reason that we usually drop F3 from the notation

D 2/F, (F3 ) and use simply D 2/F to denote the space of Fl-derivations of F2 with values

in any extension field of F2.

Definition 2.8 Let F be a field whose multiplication identity is denoted by e. If Z71 e # 0
for all positive integers n, we say that F has characteristic 0.

For example, the fields R and C have characteristic 0. In fact, every extension field of R
has characteristic 0 since it shares the same identity element with R. The following result
is quoted from [ZS 65, page 125].

9



Theorem 2.4 Let F2 be a finitely generated extension field of F, and let F3 be a finitely
generated extension field of F2 . If F2 has characteristic zero, then each derivation D E

DF2/F, can be extended to a derivation D in DF3/FI.

Example: We now consider in some detail the space of derivations for an important spe-
cial case and derive a result that will be needed in Section 3. Let F1 = R and let F'3 =
R(Z1, X2,. . X,,), the field of rational functions over OR with indeterminates X1, X2,..., ,m.

Furthermore, we let F2 be the subfield of F3 which is generated by polynomials f', 1",.. ., f" C

F3 . In other words, F2 is the set of all rational functions that can be expressed as rational
functions of the fj's. It can be readily verified that the partial derivatives " , defined by

(0)
are in F3 /F, (F3), where 6jk is the Kronecker delta. This implies that for any D G PF3/F, (F3)
the derivation (D - Em D(Xk) o -) maps xr, . . . , x, to zero. Hence it maps F3 to zero.

In ubher words, we have

D = a

axk=1

Hence D is completely determined by the choices of D(xk) E F3 , k = 1,2,... ,m, and
{..,.. ' )-= is a basis for CF,/F,(F3). Now suppose that D E DF2 /F,(F3). Since F2

has characteristic 0, by Theorem 2.4, we see that D can extended to a derivation D in

DF /F, (F3). From the above discussion, we see that

D (xk)a (2.1)
kxk=l

Therefore, the map D, which is equal to the restriction of D on F2 , can be written as a linear
combination of the a-'s (cf. Eq. (2.1)). Conversely, for each choice of D(zk) E Fs, Eq.
(2.1) defines a derivation in DF2 /F,(F3). However, two different choices of D(xk) may give
rise to the same derivation in DF2/F1 (F3). As a matter of fact, any f E F2 can expressed in
the form of f = g'(fl, f2,..., f,), where g(z1, z2 ,... zn) is a rational function. By the chain

rule, we have

D(f)= -zgD(f,)+ aggD(f2)+...+

where 1 is the partial derivative of g with respect to zj defined in the usual sense. SinceOs,

the "-'s are independent of D, we see that D is completely determined by its operation

on fl, j = 1,2,... , n. Moreover, since the f, 's belong to F2 we see that different choices of
the D(fj)'s will result in different derivations in PF/F,.
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We now develop an explicit formula for the dimension of DF2 /F, (Eq. (2.4) below), in the
context of the particular example we have been considering. This formula will be crucial
for the results of Section 3.

Notice that for every j and any D E PDF2 /F, one has

D(f/) - D(Xx (I'j)

k=1

(!(X),5(T2, ( , f. (2.2)
We now rewrite Eq. (2.2) in the matrix form

(D(fi),D(f 2 ),...,D(f.)) = (D(X1),D(X2),. .. ,D(Zm)) [Vf, :j cJ,

where J = {1,2,. . . , n}. Since ID(Xk) can be taken arbitrarily, we see that the vector space
PF2 /F1 (F3) is isomorphic to the space spanned by the rows of the matrix [Vfj :jj. Hence

dimDF,/F, = rank[Vfj : j';, (2.3)

where the entries of [Vfj :j] are polynomials in the variables X1 , X2,.. xn and the rank
is evaluated in the field F3 .

An alternative formula for dimD F2/1, is obtained as follows. We can assign real values
to z 1 , X2 ,... x. and calculate the rank in R. Consider the matrix [VfI(p) : j] which is the
matrix [Vfj j] evaluated at the point p E Rm. Suppose the maximum (over all p) rank of
[Vf,(p): j] is r. Then there must exist some p C 'm and some submatrix of [Vfi(p) : j]
of dimensions r x r whose determinant is nonzero. Consider the determinant (in F3) of the
corresponding submatrix of [Vf! j]. This determinant is a polynomial which, according
to the above discussion, does not vanish at p. Therefore, this determinant is a nonzero
polynomial. Consequently, the rank of [Vf : j] (viewed as a matrix of elements of F3) is
greater than or equal to r. By reversing this argument, we also see that r is no less than
the rank of [Vf, : j]. Hence

max rank([Vfj(p): j]) = rank([Vfj : j).
pERm

Combining this with Eq. (2.3), we obtain the following basic result:

dimPF2/F' = max rank([Vfj(p) j]). (2.4)
pERm

We close this section with a result which relates the transcendental extension degree
and the dimension of the associated space of derivations (see [ZS 65, page 125-1271).

11



Theorem 2.5 Let F, be a field and let F2 be a finitely generated extension field of F1 such
that tr.d.F 2/Fl = d and dimDF2/Fa = t. Then t is equal to the smallest number r such
that there exist elements A1, A2 ,..., Ar with the property that F2 is separable algebraic over
F1 (AI, A2,.. . ,,Ar). In particular, t > d. Furthermore, if F, has characteristic 0, then the
equality t = d holds.

3 One-Way Communication Complexity.

In this section, we study the one-way communication complexity of evaluating a set fl,. --, f
of polynomials, when the messages transmitted are restricted to be polynomial functions of
the data. We apply the tools of field extension theory (presented in Sectic:. 2) to obtain a
bound for the communication complexity which is almost optimal (within one message). It
will be seen that our results strengthen earlier results in a number of directions. We also
show that the restriction to polynomial protocols can increase the communication com-
plexity of the problem by at most one message. We then specialize to the case where the
polynomials f, to be evaluated are of the form f,(z, y) = fj(x + y), for some functions fj,

and we show that there exist optimal protocols with a very simple structure: they consist
of messages which are linear functions of the data.

3.1 General Results.

The main available result on one-way protocols is due to Abelson [A 78]: 3

Theorem 3.1 Let f : R' x R' i-, R be an infinitely differentiable function.

a) Let D be a subset of R, x R n . There holds Coo(f; D) < r if and only if there exist
infinitely differentiable functions ml,m 2 ,... , : Rn _, W and h : 'R+ _ R such
that

f(z,Y) = h(y,m1(Z),m 2(X), . ..,m7 (z)), V(z,y) E D. (3.1)

b) Let (z, y) be some element of !R, x R'. There exists some open set D c !R, x Rn

containing (zX, y*) for which Co,(f; D) < r if and only if

dim (span{gjz.,g2 ,.,..,g, ,,.}) < r, (3.2)

where g,.. (y) = L(x*, y) and where the span is taken in the vector space of functions
of y defined on an open set containing (,y').

3 We state this result for the class fl**(f; D) of protocols that use infinitely differentiable functions. The
result was actually proved in [A 78 for the class nlh(f; D) but the proof remains valid for H.(f; D).

12



Let us consider protocols whose domain D is all of &I x W?. By varying (X ,y) over

all possible elements of R' x R' and applying part (b) of the theorem to each one of these

points we obtain

Co.(f; R m x R') _ max dim (span{gl,z.,.. .,g ,2'}). (3.3)

Part (b) of the theorem states that this lower bound is also tight in a local sense: there exist
protocols whose number of messages equals the lower bound and which evaluate f correctly

when (z, y) is restricted to a suitably small domain D. However, nothing can be inferred on

the tightness of this bound when one considers protocols whose domain is all of m x R.

Furthermore, the message functions m in Eq. (3.1) are not guaranteed to be polynomials,

even if the function f is a polynomial. Both of these deficiencies will be remedied in the

sequel.

Throughout this section, we assume that we are dealing with a given set 7 = {fi,... , }
of polynomial functions mapping R' x R into R and that only one-way protocols are

considered. We start by proving a lower bound similar to Theorem 3.1(b), but more general,

because Theorem 3.i dealt only with the case s = 1.

Notation: For i = 1,..., s, and for any set a = (al, .. n) of nonnegative integer indices,
we define a function g? : R'+' " R by letting

090fi
giX'Y) = aya;,ayQ ...a. (Z) (3.4)

(We use the convention go f,.) Let A be the set of all a such that g' is not identically

zero for some i. (Clearly, A is a finite set, since each f4 is a polynomial.) For any function
g(x, y) : R' x OZ 1-, O, we use Vzg to denote the vector-valued function of dimension m
whose components are the partial derivatives of g with respect to the first m coordinates.

Theorem 3.2 Let D be some open subset of Rm x R".

a) If C.(7; D) _ r, then there exist infinitely differentiable functions i,... ,mr :RI
R and h? : Rr+n _, i= 1,...,, aE A, such that

ga(x,y) = hM(y,rm((z),... ,mn(x)), V(x, y) E D, i = 1,... ,s. (3.5)

b) There holds

C.(f;D) 2 max rank[Vg'(x,y):i=1,2,...,s;aEA]. (3.6)
(z,V)ED

13



Proof: a) Since C.(f; D) < r, there exist infinitely differentiable functions in 1 ,...,m and
gl,.. .g such that

f(z, Y) )=h,(m(x),...,m,(x),V), V(z, y) ED, ;=1,....

We differentiate both sides of this equation, with respect to y. The left-hand side yields
g(z, y). The right-hand side remains an infinitely differentiable function of mj (z), j -
1,... ,r and y, and h can be taken equal to that function.

b) Suppose that C,,(7; D) = r. Then Eq. (3.5) holds for some suitable functions h and for
all (x, y) E D. By differentiating both sides with respect to z, we obtain

a ~ r aV=~ (xy V(jx,_.m()y .M() ~,y , Vi. (3.7)
k=l

Thus, each column of the matrix [Vzg9(z, y) = 1,2,... ,8; a E A] is a linear combination
of the vectors Vml(x),... , Vmn(z). It follows that the rank of that matrix is at most r
for every (x, y) E D. Q.E.D.

We now notice that any polynomial fi can be written in the form
f,(z,y) = j, , a~z'jy =" 9. °

A (XY) f,.(Xyl Y Y n(3.8)
........Z,--t)EA

where each fjr is a suitable polynomial. By differentiating both sides of (3.8), setting y = 0,
and comparing with Eq. (3.4), we see that for each i,^, there exists a positive constant ci"
such that

f,.(z) = cia9g(X,0), Vx E ,n. (3.9)

Let us define

t = maxrank[Vfi,(X): i= 1,...s1a EA:] (3.10)

Using Eq. (3.9) we see that

t= maxrank[V,,g!(z,O): i 1,2,...,s;aE A]
zER4

< max rank[V,,g (x,y):i=1,2,...,s;eEA]. (3.11)-(Z,Y)ER" xat

Corollary 3.1 Cpoi (7; m, x R) _ Co(7; " x Rn) > t.

Proof: The first inequality is trivial since we are considering a restricted class of protocols.
The second follows from (3.6) and (3.11). Q.E.D.

We make a short digression to verify that the bound t of Corollary 3.1 is a generalization

Theorem 3.1.

14



Theorem 3.3 For the case s = 1, that is, for the problem of computing a single polynomial
f(Z,)) -= a.EA fa(x)Y' " " *yn", the value oft is equal to the right-hand aide of Eq. (3.3).

Proof: Let us fix some x° E Rm . Let r(z*) be the dimension of the span of {-!L (x , y),j 
1,..., In}, where the span is formed in the vector space of functions of the variable y. We
only need to show that maxz.Ean r(z °) = t. Notice that

V. f(x', y) = . A V/(Z'y ...Y2 n

aEA

Using the definition of r(x'), we see that there exist m - r(x*) linearly independent vectors

PIP2, ... , )m-r(z.) in R" that are orthogonal to Vzf(z',y) for all y. This is clearly
equivalent to

TVf(X. ) = 0, Va, s,

and implies that rank[Vzfa : a E A] < r(x*). Taking the maximum over all x°, we have
t < r(zx). The proof of the reverse inequality is just the reverse of the preceding argument.

Q.E.D.

We now come to the main result of this section which shows that the lower bound of

Corollary 3.1 is quite tight.

Theorem 3.4 There ezists an open set Do C R' whose complement has Lebesgue measure

zero and such that Cpov(f; Do x Rn) < t + 1.

Proof: We will show the existence of an open set Do and of a set of polynomial message
functions MIin,... , Mt+l, such that each fia can be expressed in the form

fa(x)=hi.a(mi(x),...,mt+i(x)), VxEDo, (3.12)

where h,, is a suitable rational function. In light of Eq. (3.8), processor P2 is able, upon
receipt of the messages mI(x),m 2 (X),. .. ,mt+l(x), to evaluate fi(x,y) for each i, and this
will prove that Cp,,V(7; Do x Rn) 5 t + 1, as desired.

Let F1 = R (the field of real numbers). Let F3 = Fl({fia}) be the field generated by
the polynomials {fia : i = 1,..., a; a E A) over Fl. Since F, has characteristic 0 and F3 /F
is finitely generated, Theorem 2.5 applies and shows that

tr.d.Fs/Fl = dimDp8 /F1 . (3.13)

Notice that we are dealing with the situation considered in the example of Section 2. In
particular, Eq. (2.4) shows that

dimPF./F, = max rank[Vfi,(x): i = 1,.. .,s;a E A]. (3.14)
zER
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By comparing with Eq. (3.10), we see that t = dimDl,/F and using Eq. (3.13), we obtain

t = tr.d.Fs/F 1 .

Let us choose a set of indices such that

t = max rank[Vf ,. , Vf,,., W1,

and let F2 stand for the field generated by ha 1 ,' , f,,, over Fl. By repeating the argu-
ment in the preceding paragraph, we obtain t = dimDF2,/F = tr.d.F2 /Fl. We then invoke

Theorem 2.3 to obtain

t = tr.d.F3 /Fl = tr.d.F2/Fl + tr.d.Fs/F2 = t + tr.d.F3 /F 2 ,

which shows that tr.d.F./F 2 = 0.

We notice that F3 is a finitely generated extension of F2 , and F2 clearly has characteristic
zero. Therefore, we are in a position to apply Theorem 2.5 to F3 /F.. to conclude that F3 /F 2

is a separable algebraic field extension. By Theorem 2.1, F3/F 2 is also a finite algebraic
extension. We can therefore apply the theorem of primitive element (Theorem 2.2) to

F3/F 2 . This leads to the conclusion that F3 = F2 (f*) where f is some linear combination
(over the field F2 ) of the polynomials {fQ: (i, c) # (ik, ak), Vk.}. More precisely,

r = E (3.15)
aEA i=1

where each ej,, is an element of F2 and where fi,,. = 0 for k = 1,..., t. In particular, using

the definition of F2 , each cic can be expressed as a rational function of f,,.., f,c,

Since F3 = F2 (f*) = F1 (f, **,. .. , A,,,, f*), it follows that each f," can be expressed as

a rational function of the functions fi,,..., i, ,, f*. Thus, there exist rational functions

h' such that

ha = a(fiia, , fit,,, f*) (3.16)

Note that (3.16) is similar to (3.12) except that it refers to the equality of two elements in
FS and that f need not be a polynomial. Let S be the set in R' on which the denominator
of some of the rational functions under consideration vanishes. The set S has measure zero.

Let us denote the complement of S by Do. Clearly, Do is an open set. By evaluating both
sides of Eq. (3.16) at an arbitrary vector x E Do, Eq. (3.12) is obtained, provided that we
can replace f by a polynomial.

To see that f can be replaced by a polynomial, we recall the representation (3.15) of f.
Since each ci, is a rational function of f/ha,. ... I fta,, the function f* can be expressed as

16



the ratio of two polynomials, f* = p/q, where q is a common multiple of the denominators
of each one of the rational functions e,. It follows that q is a polynomial function of
Ala,,.-,)fta,. Let us consider the one-way protocol defined by ml, = fic,,, k = 1,...,t

and it+1 = f*. Then, q is known to a processor who has already received the values of
lilac,..., fi,a,. Consequently, transmitting the value p(z) (as the last message) carries the

same information as transmitting the value f' (z). We have therefore constructed a one-way

protocol (with mk = fi,= , k = 1,... ,t, and mt+l = p) which uses t + 1 messages, and
all messages are polynomial functions of the input z. Furthermore, by Eq. (3.16) and the
fact that q is a polynomial function of m 1 ,... ,mk, we see that Eq. (3.12) holds for some
suitable rational functions hi,. Q.E.D.

In order to turn Theorem 3.4 into a useful result, one needs a computationally effective
method for evaluating t and for constructing a protocol that uses t + 1 messages. The
solution to this problem is not apparent and depends on the structure of the field F3 .
However, our proof does suggest a randomized procedure, which we now outline. Assuming
that the number of functions f, is not excessive, we can evaluate the rank of the matrix

consisting of the gradients Vzfi, at a random point. Obviously, except for a closed set of
zero measure (an algebraic set) we will find the maximum rank t, as well as polynomials
ffai,) .. ,fitat with the desired properties. Moreover, according to ".ie remark following

Theorem 2.2, we know that the overwhelming majority of choices of the coefficients fj, in
Eq. (3.15) are acceptable.

To summarize the results in this subsection, we have shown that (as long as we are
willing to disregard a set of points of measure zero) the restriction to polynomial messages

can increase the communication complexity by at most one. This is in contrast to the earlier

results (Theorem 3.1) that asserted the existence of protocols which are not necessarily

polynomials and whose domain is only some (possibly very small) open set.

3.2 Computing Polynomials of the Form f(x + y).

In this subsection we consider the special case where all of the polynomials f : W" x R' _+

to be computed are of the form

f,(XV) = ,(x + ), i=1,2,.....,,,

where each fR P '-4 R is a polynomial.

We exploit this special structure and show that linear protocols (i.e., the messages are
linear functions of the input) are optimal within the class of protocols that use infinitely

differentiable message functions.
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Let, as in the preceding subsection,

g?(X'Y) == - . . a (X~).

We view h as a function of a variable z E R and we define

- z 9a . " (z).

Let

t = max rank Vgj(z): i = 1,...,s;a E A. (3.17)

Theorem 3.5 Co,(; X Rfl) Cinea(f; R × ') t.

Proof: We first prove a lower bound. Using Theorem 3.2(b), we have

C,,,,(f; R' x R') _> max rank'V,g* z)Ia .

We notice that §(z) = go(x,y) and VjQ (z) = V go(z,y), where z = z + y. We thus

obtain

Coo %n ,X × n) > max rank Vjo (x + y);i, a]
(ZV)E!R"XRn

= max rank[V,§' (z); i, a]zER"

which proves the lower bound. Given that C." (f;7;R X Rn) < Clin a ,(f; !R x &n), the proof

of the theorem will be completed once we establish that Cinar (f; x R,) _ t.

We first consider the case where t = n. In this case, we can use the protocol defined by

mk(x) = zk, k = ,.... . , n. (That is, processo'r PI transmits its entire vector to processor

P2.) This is clearly a linear protocol with t messages and establishes the desired result for
the case t = n. Notice also that the case t > n cannot occur since t is the rank of a matrix

with n rows.

The proof of the upper bound for the general case (t < n) proceeds by induction on n.

For the basis of the induction, we consider the case where n = 1. If t = n = 1, then the

result is true, by the argument of the preceding paragraph. If on the other hand t = 0, then

Vh'?(z) = 0 for all z E R and all i,a. By letting a = (0,0,... ,0), we see tnat Vf,(z) = 0

for all z and i. Therefore, each fi is a constant function. In this case, processor P2 can

compute f,(x, y) for each i, without receiving any messages, and Clinear(f; R n x !R'n) = 0 = t,

as desired.
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We now assume that the result has been proved for n - 1 (n > 2) and we prove it for n
as well. The case t = n has already been dealt with and we assume that t < n.

Lerruna 3.1 If t < n, then there exists a nonzero vector c = (cl, C2, ... ,c) E !Rn such that

a*
Ec z= ,Vi, Z. (3.18)

Proof: The left hand side of Eq. (3.18) is a polynomial, therefore, it suffices to show that
the coefficient corr -6ponding to each term ZIzl2z. . . zr," is identically zero. Let us denote
the coefficient corresponding to the term ZI I 1Z2 Zn of 8h/8z, by da(ij). Then Eq.
(3.19) becomes equivalent to >=1 cjda(ij) = 0 for all i and a.

Let H(z) = [VzA?'(z);i = 1,... ,s;a E .], and consider the matrix H(0). Note that the
column of H(0) corresponding to indices i, a, is equal to

od (da,(il ), d,, (i2), . .., d. (in) ),

where a! 41f 1a_!2! arn!. (This is because the terms corresponding to a' t a are either
washed out by the differentiations or are set to zero when we let z = (0,0,...,0).) We
have rankH(0) _ maxE. rankH(z) = t < n. Therefore, there exists a nonzero vector
c = (cl, ... , c,) E R R which is orthogonal to each one of the columns of H(0). This implies
that =, cjda(ij) = 0 and concludes the proof of the lemma. Q.E.D.

Without loss of generality, we assume that c : 0, where cn is the last coordinate of
the nonzero vector c given by Lemma 3.1. We define an invertible linear transformation
T : R -, Rn by means of the formula

Tz = (Z1 + C z, Z2 + C2zn,.. zn-I + cn- zn, Cnzn).

We will show that this coordinate transformation leads to polynomials that are independent
of the last coordinate of their argument, which will then allow us to use the induction
hypothesis.

Consider the polynomials ft,..., f: and f',..., f defined by

3'(z) = f,(Tz) = i,(z + cIzn,...,zn- + Cn-znzn), (3.19)

fA(z,y) = ii,(X +y). (3.20)

Using the chain rule and Eq. (3.18), we see that

a--- = Eo01
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Therefore, the polynomials A! are independent of the last coordinate of their argument and

can be viewed as mappings defined on R'-' (instead of an).

Given that T is an invertible linear transformation, it is easily seen that the rank of the

matrix considered in (3.17) does not change if each i is replaced by f!. We now apply the

induction hypothesis on the functions/'= {f ,..., ff} to conclude that

cli,.,.(A' xn X <n t.

Let the linear functions m'(x),..., m'(z) correspond to a linear protocol for the problem of

evaluating the functions in 7'. It follows that there exist polynomials g',... ,g' such that

fA(z, y) = g,,'z),... ,mt(z),y), Vi, X,y.

Therefore,

f1 (z,y) = 7 (z + y) = ^'f(T- 1 (z+ y)) = fi'(T- x,T- y)

= g(m',(T-zx),...,m (T-'x),T-',), Vi,x,y,

where we have use of the definitions (3.19) and (3.20). Thus, the functions Mi,... , rt

defined by mi(x) = mr(T-lx), i == 1,... t, define an one-way protocol for the problem of

evaluating fl, f2,... ,f,. Furthermore, each mi is linear, since it is the composition of linear

functions. Therefore, Clnear (f; R ' x R ') _< t. This completes the induction and the proof

of the theorem. Q.E.D.

We remark that the proof of Theorem 3.5 actually provides a procedure for constructing

a linear and optimal protocol. Furthermore, the proof shows that we do not need to evaluate

maxzE,- rankH(z) but only the rank of H(0). If the latter rank is equal to n, the problem

is trivial, and if it is less than n, Lemma 3.1 applies and the problem can be reduced to

one with a smaller dimension. Another point worth mentioning is that our proof actually

suggests a deterministic procedure for constructing the optimal linear protocol. In fact,

one can first compute the rank of H(0). If rankH(0) = n, then Mk(X) = zX is an optimal

protocol. If H(0) has rank less than n, then one can use, for example, Gaussian elimination

method to find a nonzero vector c such that cTH(0) = 0. As shown in the proof, the

problem is reduced to one with a smaller dimension by a suitable change of variables. By

repeating this process at most finitely many times, one will find an optimal linear protocol
for computing functions fi, i = s.

4 Preliminaries Continued.

In this section, we review some results (e.g. Iilbert's Nullstellensatz) from algebraic geom-

etry (see e.g. [AM 69,H 77]) that will be needed in Section 5.
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Let Ci zI, X2,... .,.] denote the ring of polynomials of variables z,... , z, over C, the
field of complex numbers. Let f,g E C[zl,z 2 ,... ,zn]. We use the notation fIg and say
that f divides g if there exists some h E C [x,z 2,. .. ,zn] such that g = f • h. We say that
a polynomiai g E C[X1, X2, .... Tn is irreducible if g = f . h implies that either f or h is an
element of C. As is well known, C zX, X 2 , .. . , X] is a unique factorization ring, that is, each
one of its elements can be expressed as a product of irreducible polynomials. Furthermore,
this factorization is unique up to reordering of the factors and up to multiplication of each

factor by an element of C.

Let fi,...,f be some polynomials in C[x,z 2 ,...,Xn]. We define the zero set of

fi,..., by

V(fl, ..,f,) = {(X1, X2...,X) E Cnl fk(X1,X2...,xn) =0, 1 < k < r}.

We now state a simple version of Hilbert's Nullstellensatz [AM 69, page 85] that will be

used in Section 6.

Theorem 4.1 (Hilbert's Nullstellensatz) Let fl,. . . , fr be some polynomials in rxi,. . . ,

Ifg E Cjz, .. . , z,] and V(f,... , f,) C V(g), then there exist some polynomials gi,.. .,g E

C JX1,. Xn] and some positive integer k such that

gk = g91f + g2 f +... + grf (4.1)

Notice that if Eq. (4.1) holds, then gk E S and V(fl,... , f-) C V(g k ) = V(g). The fact

that the converse is also true is exactly the content of Hilbert's theorem.

Corollary 4.1 If f,g E C[xi,...,x,,], and if f(x) = 0 implies that g(x) = 0, i.e., if
V(f) c V(g), then there is an integer k and some h E C[x,..., x,,] such that gk = fh. (In

other words, fIgk.)

One can assign a topology to the field Cn by taking the family {V(S) I S is an ideal} as

the closed sets. (It is a simple exercise to check that these sets satisfy the usual requirements
for the closed sets of a topology.) Traditionally, this topology is called the Zariski topology
on C. An important property of Zariski topology is the following (see [H 77)).

Theorem 4.2 Every two nonempty Zariski open sets of Cn have nonempty intersection and

every closed set has zero Lebesgue measure.
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5 Two-Way Communication Complexity.

In this section we study the two-way communication complexity of evaluating a function

f : Df -- C, where Df, the domain of f is an open subset of Cm x C'. Throughout, we

assume that f is twice continuously differentiable on Df.

5.1 Abelson's Lower Bound.

Definition 5.1 We let H ,y(f) be the matrix (of size m x n) whose (ij)-th entry is given

by 0 2f We use the alternative notations (yhz(f))(p) and H±y(f)l p to denote the value

of H 2v(f) at some vector p E Df. Also, we let Vf and Vyf standfor the vectors of dimen-

sions m and n (respectively) with the partial derivatives off with respect to the components
of z and y, respectively.

The following basic result has been established by Abelson [A 801: 4

Theorem 5.1 For any open set D C Df and any p E D, we have

C2(f; D) >! rank (H.,y(f)) (p). .1

Theorem 5.1 has an obvious corollary

Corollary 5.1 For any open set D C Df, we have

C2 (f; D) __ max rank(H, (f))(p). (5.2)
pED

The matrix Hz,(f) is defined in terms of the cross derivatives of f and in some sense

provides information on how z and y are interrelated in the formula for f(x, y). On the

other hand, Eq. (5.1) only takes into account the second order derivatives of f and ignores
the higher order derivatives or the first order derivatives of f. Thus, this bound should

not be expected to be tight, in general. As an example, let f be a linear function, e.g,

f(z, y) = aTz + bT (a E Cm ,b E C',a $ 0, b # 0). It is clear that C 2 (f; D) = 1, for any

open set D, while Eq. (5.1) gives a vacuous lower bound of zero. The following corollary

strengthens Eq. (5.1) somewhat, by incorporating the first order derivatives of f as well. It

is only a minor improvement because it can increase the lower bound by at most 1.

4This result was actually proved in [A 80] for real-valued functions defined on R" but the proof
remains valid when N is replaced by C.
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Corollary 5.2 For any open set D c D! we have

C2(f; D) _ max max rank[(H2 y(f))(p) + cVff(p). Vf(p)T].
cEC pED

Proof: We notice that C 2(f; D) C 2 (g o f; D), for any twice continuously differentiable

function g : C - C, where g o f denotes the composition of f and g. For any p E D, and

c E C, consider a function g such that g'(f(p)) 6 0 and c = g"(f(p))/g'(f(p)). The result
then follows by applying Theorem 5.1 to the function g o f. Q.E.D.

In the remainder of this section, as well as in the next section, we investigate the extent

to which Abelson's bound is tight and we derive some tighter bounds. We will mostly

restrict attertion to the case where f is a rational function and we will require the messages
to be rational functions of the input. In the next subsection, we identify two instances

where Abelson's lower bound (Theorem 5.1) is tight. Then, in Subsection 5.3, we establish

some new general lower bounds by making use of Hilbert's Nullstellensatz.

5.2 Some Cases Where Abelson's Bound is Tight.

We consider here two particular cases in which Abelson's bound (Theorem 5.1) can be

shown to be tight. This is in contrast to the results in Section 6 in which it will be shown
to be far from tight.

Theorem 5.2 Suppose that f(x, y) = zTQy, where Q is a matrix of size m x n and z E
Rn, y E Rn. Then C 2(f; Rn+m,) = rankHzv(f) = rank(Q). In fact, the lower bound can be

attained by a one-way protocol with linear messages.

Proof: Let rank(Q) = r. By Theorem 5.1, we see that C 2(f;9'+ m ) > rankHz(f) =

rank(Q) = r. To prove the other direction of the inequality, we will present a one-way

linear protocol that uses exactly r messages. Using the singular value decomposition of Q,

there exist vectors ul,...,u, E R, and v1,... ,v, E ?n such that

Q = ulvT + U2 v t"...+ uvT,

from which we obtain

zTQY zV~T T Y + ... + XT VTxr~ =7UVI + X7r 2 Ur + ... (5.3)

Notice that in Eq. (5.3) each one of the expressions r uj and vry is a scalar. Thus, the
one-way protocol with r linear messages, defined by mi(x) = X T = 1,...r, is adequate
for computing f. Q.E.D.
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Theorem 5.2 states that Abelson's bound is tight for homogeneous quadratic polynomi-
als. What happens for polynomials of degree greater than 2? In what follows, we will show
the tightness of Abelson's bound for computing functions of the form: f(x, y) = g(z + y),
where g is a nonlinear homogeneous polynomial in no more than 4 variables. While this

result determines a case for which C 2 (f; ?2,) can be determined completely, it is of little use
in practice. This is because we have n < 4 and the naive protocol mi(z) = xi, i = 1,... ,n,

uses at most 4 messages and cannot be too far from being optimal. Our result makes use

of the following theorem proved by Gordan and Nbether in 1876 ([GN 76]).

Theorem 5.3 Let f : R"- RI? be a nonlinear homogeneous polynomial in n < 4 variables

and let H(f) be its Hessian matriz. If detH(f) = 0, then there exists a linear mapping T

from Rn onto R' and a homogeneous polynomial g : T -+ R such tha. f(x) = g(Tz).

Our result is the following:

Theorem 5.4 Let g : R'n _,R vle a nonlinear homogeneous polynomial and let the polyno-

mial f: :R2 _Rn be defined by f(x,y) = g(x+ y). If n < 4, then

C 2(f; IRz) = max rank11 (f)l(,,) -- Clmna(f;"2n).(z.IV)EN 2  M" ,)Clna~

Proof: Let z = x + y. We regard g as a nonlinear polynomial in the variable z E Rn.

Let k be the smallest integer such that there exists some linear mapping T from Rn onto

R' and some homogeneous polynomial 4 : R- such that g(z) = §(Tz). Since g is
nonlinear and T is linear, we see that 4 is also nonlinear. We claim that there exists

some vector i = (il,. --,) E RA at which H(4) is nonsingular. Indeed, if this is not so,
then by Theorem 5.3, there exists another linear mapping T from Rk onto R'-1 and some

homogeneous polynomial R -. - such that §(i) = §(Ti). But this implies that

g(z) = § (Tz). Since the composition of T ind T maps R onto R-1, this contradicts the

definition of k.

A simple calculation shows that H(g)1, = TTH(§)ITT. Since T maps R" onto Rk, the
matrices T and TT have full rank and we obtain rankH(g)I, = rankH(§)Ir,. Since the
range of T is all of Rk, we have

max rankH(g):, = max rankH(§)jj = k.
zER" IERk

Since Hz,(f)(,,) = H(g)l=z+,, we obtain that max ,rankH~j(f) = k. It then follows

from Theorem 5.1 that C 2 (f; -R 2 ) > k. To establish the reverse inequality, we will present
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a protocol for computing f that uses exactly k messages. Let mi(z) = Tix, i k ,... ,

where Ti is the ith row of the matrix T. Then,

f(XY) = g(x+ ,) = (T(x+y))= (Tl(Z+ ),...,Tk(x+y))

= §(m1(z)+T1,...,mk(X)+TtY).

This last formula shows that f can be computed using the one-way protocol with messages
ri(x) = Tix, i = 1,...,k. In particular, C 2(f; R 2n) ,(f; R2,) < k, which completes

the proof. Q.E.D.

Unfortunately, Theorem 5.4 is not true for the case n > 4, for the simple reason that

Theorem 5.3 fails to hold. Historically, Hess had published a paper in which he gave an
erroneous proof of Theorem 5.3 for all n. It was later discovered by Gordan and N6ether
that Hess' proof was incorrect and proved that the largest value of n for which Theorem

5.3 holds is 4.

5.3 Some New Lower Bounds.

Throughout this subsection we assume that f : Df " C is a complex rational function,
where Df c C, x Cn is the set of vectors (z, Y) at which f is finite. In this context it
is natural to consider "rational" protocols, in which the messages transmitted are rational
functions of the input data (z, Y).

We present two new methods for establishing lower bounds on the two-way communi-
cation complexity in this setting. The first method provides lower bounds on Cat(f; D)
for any open subset D E Df. The second method requires that D = Df but usually gives

sharper lower bounds.

Our first method (Theorem 5.5-5.7) exploits the fact that any rational protocol can
be converted into a protocol in which the messages are polynomial functions of (z, y) and
which uses at most '.wice as many messages:

Theorem 5.5 Let f be a rational funciton and let D be an open subset of Df. Then there

holds
Cr.t (f ; Df ) < Cpojy (f ; BDf< 2Cr..o (f ; BD)

The idea behind the proof of Theorem 5.5 is that each rational message of a rational
protocol can be replaced by two polynomial messages consisting of the numerator and
denominator polynomials (respectively) of the original message. The proof can be found in
[L 89J and is omitted because it is relatively straightforward and also because Theorem 5.5
will not be invoked in subsequent proofs.
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Suppose that f(z, y) = p(x, y)/q(z, y) where p and q are two relatively prime poly-
nomials. In particular, D! = {(z,y) I q(z,y) : 0). Let D c Df be an open subset.
Consider some rational protocol lr E 1 1

7 0t(f; D) with r messages, where r = Crat(f; D) (cf.
Section 1). Then, by Theorem 5.5, there exists a polynomial protocol ?r' e nlpoy(f; D)

that uses 2r messages. Let in1 , ... , m2, be the message functions of the protocol ?r'. As-
suming that processor P1 performs the final evaluation of f(z, y), we must have f(z, y) =
h(x, mi(x,y),. . ,rn 2(z,yY)) for all (x, y) E D, where h is a rational function. Since h is
rational, we must have f(z,y) = p'(x,y)/q'(x,y), where p' and q' are some polynomials
whose values (on the set D) are completely determined by the values of the message func-
tions n 1 , .. . , M2r and z. This implies that Cpo0 y(p'; D) < 2r and Cpal,(q'; D) < 2r. Notice
that p/q = p'/q'. Using the unique factorization property of rational functions over C (cf.
Section 4), we see that p' = pg and q' = qg for some nonzero polynomial g. We conclude
that there exists some nonzero polynomial g such that

Ct a(f; D) >_ Cpo(pg; D)

and

Ct a(f ; D) Cpojy(qg; D).

This shows that we can bound from below the communication complexity of f by bounding
from below the communication complexity of pg or qg. The difficulty, however, is that the
polynomial g is not known and we are forced to develop a bound which is valid for an
arbitrary choice of g. Ideally, we would like to able to say that if p has high communication
complexity then the same is true for pg. Although this does not seem to be true in general,
the following result makes a step in that direction.

Theorem 5.6 Let f,g E C[zi,.. .,zm,y1,...,y,n] be two nonzero polynomials which are
relatively prime. Then,

C 2 (fg; C ')> max rankHzV(f) 2,
(Zy)EV) I(Z) -

where V(f) = {(z,y) I f(z,y) = 0) is the zero set of the polynomial f.

Proof: By Theorem 5.1, we have

C2(fg; Cme n ) > max rank (Hj(1fg)) (.,Y)

-- (ymax rank (f(z,y)Hy(g)([,,) +g(x,y)Hzy(f)l(.,,)+
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4- z y)) 1gz, 1 ))T + (V~g(z, 1 ))(Vyf(X,))T)

> max rank (f(x,7A Hzy(g)() + g(x, y) H.V(f) ~ -2- (z,V)EC-+m (Zy

> max rank (g(x, y)H,(f) )) -2.
(X.Y)EV(f) (I

Choose some (xO, y0) E V(f) such that

rank (Hz(f)(,oVo))= max rankH,,Y(f)(,,) =r.
(Z,Y)E V()

Then, there exists a submatrix M of size r x r embedded in H 2,(f), which is nonsingular

at (xo, y0). We view this submatrix as a function of (x, y) and we consider its determinant

det(M) which is a polynomial in (x,y). We have just shown that V(f) is not contained in

V(det(M)). In other words, if we write f as a product of irreducible polynomials, then at

least one of the irreducible factors of f, call it fl, does not divide det(M). But since f and g

are relatively prime, it follows that f, does not divide g either. We conclude that f, does not

divide g det(M). We now claim that V(f) 0 V(g det(M)). If the claim is not true, then

V(f) C V(g . det(M)). Hilbert's Nullstellensatz applies and shows that (g det(M))k = fh

for some positive integer k and some polynomial h. By the unique factorization property,

we see that the irreducible polynomial f, would have to be a factor of either g or det(M),

which is a contradiction and establishes our claim.

Since V(f) 0 V(g . det(M)), there exists some (x*, y*) E V(f) such that

g(x*, y*)det(M)l(, y.) :0 . Consequently,

max rank (g(x,y)Hy(f)I)(.,Y)) _ rank (g(xz, y)Hz (f)I(2.,Y.))
(Z,Y)EV C!)

-r

- max rank (H .(f)(,
(Z,Y)EV(I)V)

which completes the proof of the theorem. Q.E.D.

The above theorem states that if rankHzy(f) is large for some (z, y) E V(f)) then fg

also has large communication complexity for any polynomial g which is relatively prime to

f. Unfortunately, Theorem 5.6 is not always sufficient for proving tight lower bounds for

fg because there exist functions f for which rankHzy (f) is small for every (x,y) E V(f)

even though Hzy(f) has high rank when the restriction (z, y) E V(f) is removed. A specific

example will be seen in the next section.

The following is a result from algebraic geometry which gives a sufficient condition on

f under which Hu(f) has high rank at some point belonging to V(f).
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Theorem 5.7 Let f be a nonlinear homogeneous polynomial in n variables such that Vf(x) ?
0 for every z E V(f). Let the polynomial f : C2n I-+ C be defined by f(z,y) = f(z + y).
Then,

max rank >H(f) (,) 1.
(Z,Y)EV(f) IW

The proof of the above theorem can be found in [Z 83] and [KL 84]. As an immediate
consequence of above Theorems 5.6 and 5.7 we have the following:

Corollary 5.3 Let f and f be as in Theorem 5.7 Then,

C 2 (f g; C2,) > n - 1

for any polynomial g which is relatively prime to f.

Unfortunately, the above corollary is not easy to apply, because the set V(f) is usually
hard to determine. Accordingly, the condition Vf(z) # 0 on the set V(f) cannot be easily
tested. In fact, it seems a lot easier to just compute the rank of H=y (f) at a random point
of V(f) because max(2,v)Ev(f) rankHz (f)l(z,y) is attained at the majority of points on V(f)
(a Zariski open set of V(f)).

We have so far shown that lower bounds on the communication complexity of a rational
function f = p/q (p and q are relatively prime) can be obtained by developing lower bounds
on the communication complexity of pg or qg, where g is an arbitrary nonzero polynomial.
We now develop our second method for establishing lower bounds by exploiting the fact that
if a protocol is to have domain the set Df on which f is finite, then the polynomial g is not
entirely arbitrary. We have shown earlier that if f can be evaluated by a rational protocol
with domain D!, then there exist polynomials p' and q' such that f(z, y) = p'(z, y)/q'(z, y)

for all (z,y) E D! and Cpoty(f;D!) _ CpoIy(q';D!). The polynomial q' must certainly
satisfy q' = qg, for some g, but it must also be nonzero at every point in the domain Df of
f because otherwise the expression p'(x, y)/q'(z, y) will be meaningless for some (z, y) E D1 .
This additional constraint is used in an essential way in the following result.

Theorem 5.8 Suppose that f is a rational function and that f = p/q, where p, q E
C[zI,.. ., z, y,. . . , Yn] are relatively prime polynomials. If q is irreducible, then

a)
C,t(f; Df) > max rank HZ(q)1(..Y) - 1. (5.4)

(Z,Y)ECm xCn
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b)
1 3

Cat(f; Df) > max rankH,(p)l(.,,) - -. (5.5)
2(Z,p)EC- XC-

Pr.of: a) Consider a rational protocol for computing f on Df that uses r = Crat(f; Df)
messages and let m.,... , m: Df '-. C be the corresponding message functions. We first
consider the special case where each one of the message functions is a polynomial. Without
loss of generality, we assume that the final evaluation of the function f is performed by
processor P1. By the definition of a rational protocol (cf. Section 1), there exists a rational
function h such that f(x,y) = h(x, ml(z,y),. .. ,mr(x,y)) for all (x,y) E D. Note that h

can be expressed in the form

h~x i(x m( y)= h~,m~~). rX )

where h, and h2 are relatively prime polynomials. Let h' (x, y) = h 2 (X, M 1 (x, y),... , r(z, y)).

The functions M 1 ,..., 0 7 were originally defined on D1 . On the other hand, since they are
polynomials they can be uniquely extended to polynomial functions on the entire of Cm+n.

Furthermore, the representation h2(X,y) = h2 (X, MI(X,y),. . . ,mn(X,y)) must be also valid
over C +n and this implies that Cpojy(h2; Ce + ') < r. We now notice that we must have
h'2(z,y) 0 for all (x,y) E Df, because the function h must be defined for all (x,y) E Df.
Equivalently, V(h 2) c V(q), where q is the denominator polynomial of f, assumed irre-
ducible. Hilbert's Nullstellensatz shows that q' = h2g, for some polynomial g and some
positive integer k. We factor the polynomial h'2g as a product of irreducible factors. Since
q is irreducible, it follows that each one of these factors must be equal to q. We conclude
that h2 = cqK for some nonzero constant c E C and some positive integer K, and therefore
r > Cpo1 (h2; C"' ) = Cp.1y (qK; Cm+n).

We now consider the case where there exists some i such that the message function
m is not a polynomial and let us choose, in particular, the first such index i. Suppose,
without loss of generality, that i E T1-.2. We have mi(z, y) = rh(x, ml(z, y),..., mi-.(x))
for some rational function rni and each one of the functions in 1 ,... ,m _ is a polynomial.
We write rhi in the form Yh,(x, y) = hx(x, y)/h 2(X, y), where h, and h2 are relatively prime
polynomials. We now repeat the argument of the preceding paragraph. Since the domain
of the protocol is all of Df, it follows that V(h 2) C V(q) and h2 = cqK for some nonzero
constant c E C and some positive integer K. Furthermore, it is clear that h2 can be
expressed as a polynomial function of m(x,y),..., mj_(x,y) which implies that r > i-1 >
Cpo,(h'; C n) = CpoI(qK;Cm+n).

To summarize, we have shown that in both cases that there exists a positive integer K
for which Co,(f; Df) = r > Cpoiy(qK; C'+-). It now remains to derive a lower bound on
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Cpoip(qK; Cm""). To this effect, we apply Theorem 5.1. We have

cpoly(qK;Cm+n) > C2(q K;Cm+n)

> max rankH,,(q K)(
(Z,V)ECm+n

max rank (Kq K-l(X' y)Hy(q)I( ) +

+K(K - 1)qK-2(X,Y)(V~q(X,))(Vyq(X, Y))T) (5.6)

" max rank (KqK-1(z, y)Hfy(q)l(.,v)) - 1 (5.7)

> max rankH.,,(q)i(,)- 1 (5.8)
- (z ,v )E c ,+ - I ) 5 8

Here the first equality (5.6) is a simple calculation and Lhe next step (5.7) is due to the

fact (Vzq)(Vvq)T has rank at most 1. The last step is obtained as follows. The set
{(z,y) I q(z,y) :A 0} is a Zariski open set. Furthermore, the maximum rank of Ht,(q)

is attained at the set of points where the determinant of a suitable submatrix of Hrv(q)

does not vanish and is also a Zariski open set. Since every two nonempty Zariski open
sets have nonempty intersection (Theorem 4.2), it suffices to consider a vector (x, y) in the

intersection of these two sets.

b) Let (x, y) be an arbitrary vector of Df. Note that

H..,E) =H,,(p) - -!H~~q (V.p)T 'V'q + 2P (V~qT (y)

q q 2 q

By evaluating the rank of both sides at (X, y) and noticing that both (V2 p)T (Vsq) (z,

and (Vzq)T (Vvq) I(=,y) have rank at most 1, we see that
p

rank HZ,(-)}(2 ,) _> rankHy(p)(V) - rankH,,(q)I(Z) - 2.
q

Therefore,

C,.,(f; Df) >_ C 2(f; D)

> rankH,,( )I( )

" rank Hzy(p)I(2 'Y) - rankH 11(q)j(,v) - 2

> rankH1(p)I(z,2 ) - C..t(f ; D) - 3, V(x, y) E Df,

where the last step follows from Eq. (5.4). After rearranging the above inequality, we see

that 1 3
C7at(f; Df) - 2 rankH(p) ( Z', ) - 2 V(z, y) E Df. (5.9)
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Since max(zl,)Ec-+. rankH2 ,z(p) is attained at a Zariski open set and Df is also a Zariski

open set, by Theorem 4.2, there exists some vector (X', y) E D! such that

max rankH,y(p) = rank H (p)I(,.)
(Z,)EC-+-

Now Eq. (5.5) becomes evident when one considers (5.9) at (x*,y). Q.E.D.

6 An O(n 2) Lower Bound for Computing [(z + y)-'11

Let x and y be n x n matrices. As an application of the results of Section 5, we consider
the communication complexity of the function f(z,y) = [(x + y)-'], (the (1, 1)th entry of

(x + y)- 1) within the class of rational protocols. While Abelson's lower bound is only fl(n),
we derive a lower bound of n2 - 1, which is almost equal to the obvious upper bound of n2 .

In particular, this example will show that Abelson's bound can be far from tight.

We motivate our choice of the problem. The value of I(z + y)-1]n can be thought of
as the solution of the system of linear equations: (x + y)u = b, where b = (1,0,... ,0) and

u is the unknown. Thus the problem under consideration captures the essential difficulties
of a distributed solution of a system of the form (x + y)u = b, when x and y are possessed

by different processors. Since the solution of linear systems of equations is the most basic
problem in numerical computation, the problem we are studying is an interesting paradigm.

It is easy to see that n2 messages would be needed if we had required that a particular

processor, say P 1, should eventually evaluate all entries of the inverse matrix (x + y)-'.
(This is because /1 could then invert (x + y)-* to obtain x + y and use its knowledge of z to

infer the value of y, and this is possible only if at least n 2 messages have been exchanged.)
However, the fact that the evaluation of the whole inverse matrix (z + y)- 1 is hard does

not imply that the computation of a particular entry is also difficult. In fact, we shall see

that the derivation of tight bounds on the communication complexity of [(x + y)- 1 ]in is
surprisingly hard. As a first indication, we show that Abelson's result (Theorem 5.1) gives

only an fl(n) lower bound.

Theorem 6.1 Let f(x, y) = [(x + y)-]11. Then

max rankHy(f)j(z,y) < 3n. (6.1)
(Z.V)EDf

Proof: Let us fix a pair p = (x0, yo) E Df of n x n matrices. We will show that the rank

of Hz.(f)Ip is at most 3n. Let Al, A2 be two n x n perturbation matrices. We consider the
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Taylor series expansion of f at the point p:

f(xo + A,yo + A2 ) = (xo + Yo) - (A 1 + A 2))-] 11

= [(xo + yo)-1 11 + [(xo + 1o)- 1 (A1 + A2 )(O + Yo)]1.

+[(xo + YO) - ' ((Al + A2)(Xo + Yo))2'Jl + ...

Notice that the value of H2 u(f)p is completely determined by the second order terms of
this expansion. Thus, if we let

g(A 1 , A2 ) = [(Xo + Yo) -_ ((AI + A2)(Xo + yo))2]1,

then Hzy(f)I(oo},) = Ha. 2 (g)I(oo). Therefore, we only need to show that

rankHA1 A 2 (g)!(oo) < 3n. We will present a two-way polynomial protocol for computing g
that only uses 3n messages.

Notice that as far as the computation of g is concerned, the matrices xo, yo are constant

and the matrices Ai (i = 1,2) are the inputs. Let e = (1,0,... ,)T. The protocol proceeds

as follows.

1. Processor P1 sends the vector A, (zo + Vo)e to processor P2 (n messages).

2. Processor P2 computes (A1 + A 2)(zO + yo)e and sends the following two vectors (2n

messages) to PI:
(A1 + & 2 )(Xo + yo)e

and

A2(zO + YO)(Al1 + A 2)(Xo + yo)e.

3. Once processor P receives these messages, it can use its knowledge of A1 to evaluate

((A 1 + A2 )(zO + yo)) 2 e. It follows that g(A 1 , A 2 ) = [(xO+YO) - 1 ((A 1 + A 2 )(XO + y0))21l1
can also be evaluated by P1 .

By Abelson's result (Theorem 5.1), we see that for any open set D containing (0,0), we
have

rankHa,A2 (g)I(o,o) _ Cpol (g; D) _ 3n,

which completes the proof. Q.E.D.

Let Df be the set of all (x, y) E C,2 x Cn 2 at which the rational function f(x,y) =

[(x + y)- 1 11 is well-defined. Clearly, D! is the same as the set of all (X,y) such that
det(z 4- y) $ 0. Our main result is the following.
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Theorem 6.2
C,.t(f Df) > n 2 - 1. (6.2)

The proof is based on two lemmas:

Lemma 6.1 The polynomial g(x, y) = det(x + y) is irreducible.

Lemma 6.2 Suppose that n > 1 and let g(xy) = det(z + y). Then the rank of H,1V(g)
evaluated at (1,0) (I is the identity matriz) is n2.

Once these two lemmas are proved, the desired result is obtained as follows. If n = 1,
then Eq. (6.2) holds trivially. For n > 1, we have f(z,y) = det11(x + y)/det(z + y) =

detlx(x + y)/g(x,y), where detli(x + y) is the cofactor of the (1,1)th entry of z + y. It is
seen that g(z + y) does not divide det1i(z + y), because otherwise [(x + y)-']ii would be
a polynomial in the entries of x and y, which is easily shown not to be the case. Since g
is irreducible (Lemma 6.1), we conclude that the polynomials detII(z + y) and g(z, y) are
relatively prime. Then, Theorem 5.8 applies and shows that

rat(f; Df) max H 1  > n- 1
(z,y)EC2n2

where the last inequality has made use of Lemma 6.2. Thus, it only remains to prove the
two lemmas.

Proof of Lemma 6.1: If n = 1, then g(z, y) = z + y, which is obviously an irreducible
polynomial. For n > 1, we assume, in order to derive a contradiction, that f(x, y) =
A(z, y)B(z, y) where A, B are nonconstant polynomial functions of the entries of z, y. Let
;., (respectively, y,,) denote the (i,j)th entry of z (respectively, y). Let us restrict z and
y by letting zxi = -yri = 1,i = 2,...,n. With such a restriction, f, A, and B can be
expressed as polynomials , , and B, respectively, of the unrestricted variables. Note that

i(x, Y) = (xi 1 + y11)detji(z + y) = )i(x, y)B(x, y).

By the unique factorization property of polynomials, we see that (xil + yS/) must be a
factor of either A(x, y) or 13(x, y). Since det(z + yj) is a linear function of ZxU + y1j, we
conclude that xz1,yil appear together in either A or 13, but not in both. It then follows
that zxx,y 11 appear together in either A(z,y) or B(x,y), but not in both. Repeating our
argument for all (ij) (I < ij < n), we see that either zx. and yii both appear only in
A(z,y) or they both appear only in B(x,y). Therefore the set {(ij), ij = 1,2,...,n}
can be partitioned into two subsets R1 , R 2 (with R, being nonempty) such that A(z, y)
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depends only on the entries zij,yij with (i,j) E R, and B(x,y) depends only on the entries
ii, yii with (i,j) E R2. Let us express each one of the polynomials A and B as a sum of

products and then carry out the cross-multiplications to expand A(z, y)B(z,y) as a sum
of products. Since A and B depend on different entries, it is seen that this expansion leads
to no cancellations. Hence, if (i,j) is in R1 then (i,k) and (k,j), k = 1,.. .n, also belong
R1 , since otherwise there would be a term in the expansion of A(x, y)B(z, y) = det(z + y)
with two entries from the same row or column. This implies that all of the entries must be
in R1 , and R2 is empty. Consequently, B(x, y) is a constant polynomial, which contradicts
our original assumption. Q.E.D.

Proof of Lemma 6.2: An easy calculation yields

1 ifi=j,1=mandi laig (1,0) -1 ifi=m,j=1andi 1
8 '-yl m 10 otherwise.

Thus, if the rows and columns of H,,(g) (1,0) are suitably rearranged, the matrix Hzy (g)I(1,o)
has the structure shown in Fig. 1. It is not hard to see that this matrix is nonsingular and
therefore has rank n2 .Q.E.D.

We would like to be able to strengthen Theorem 6.2 in a number of directions. First,

Theorem 6.2 refers to the computation of [(x + y)- 1111, where x, y are complex matrices.
This does not lead to a lower bound when we restrict x and y to be real, even though this is
the case of main practical interest. A related deficiency is that the lower bound applies only
to protocols whose domain is equal to all of Df. It would be interesting to know whether
the communication complexity of the problem can be reduced by an order of magnitude
when we restrict to real matrices, or if we only consider the evaluation of f in an open set
real matrices. We conjecture that this is not the case, but we are not aware of any proof
technique that could lead to such a result.

One possible approach for proving a stronger lower bound is based on Theorem 5.6 of
Section 5. This result shows that an fl(n) lower bound will be established if we manage
to find a pair (z,y) of matrices such that g(z,y) = 0 and rankH,(g)l(2 ,,) = fl(n 2), where
g(x,y) = det(z + y). Unfortunately, the determinant function is particularly nasty in that
respect. It can be shown [L 891 that the rank of H,,(9) is n 2 at each point (x, y) such that
z + y is invertible but it is no more than 3n + 3 at each point (Z,y) at which g(x, y) = 0.

Finally, let us mention that an (1(n2) bound can also be obtained for the special case
where z and y are restricted to be symmetric matrices. The proof is similar to the proof of

Theorem 6.2.
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7 Conclusions and Extensions.

We have presented a variety of new results on the one-way and two-way communication
complexity for algebraic problems. We have used, in several occasions, the results of [A 80],
but our results are often stronger because they exploit the algebraic structure of the problem.

There are several directions for further research on the subject. One direction concerns
the derivation of lower bounds on two-way communication complexity that involve infor-
mation other than the second order derivatives. (One such result can be found in ITL 891.)
Another direction concerns two-way protocols for computing a collection {fl,... , f,) of
functions, with a > 1. Here, even if one assumes that the functions fi are quadratic, the
evaluation of the communication complexity is surprisingly hard and leads to problems
with a combinatorial flavor. (Some partial results can be found in [L 891.) A final direction

concerns "multi-party" protocols in which more than two processors are involved. There
is very little literature on this subject [CF 83] and it is not completely clear what are the
interesting problems in this area.

Acknowledgement: We are indebted to Professors Steve Kleiman and Michael
Artin and Mr. Siye Wu of MIT for several stimulating discussions. We also wish to thank
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